223 research outputs found

    First high-resolution images of the Sun in the 2796 \AA{} Mg II k line

    Full text link
    We present the first high-resolution solar images in the Mg II k 2796 \AA{} line. The images, taken through a 4.8 \AA{} broad interference filter, were obtained during the second science flight of SUNRISE in June 2013 by the SuFI instrument. The Mg II k images display structures that look qualitatively very similar to images taken in the core of Ca II H. The Mg II images exhibit reversed granulation (or shock waves) in the internetwork regions of the quiet Sun, at intensity contrasts that are similar to those found in Ca II H. Very prominent in Mg II are bright points, both in the quiet Sun and in plage regions, particularly near disk center. These are much brighter than at other wavelengths sampled at similar resolution. Furthermore, Mg II k images also show fibril structures associated with plage regions. Again, the fibrils are similar to those seen in Ca II H images, but tend to be more pronounced, particularly in weak plage.Comment: Accepted for publication in The Astrophysical Journal Letter

    Ground-Based Coronagraphy with High Order Adaptive Optics

    Get PDF
    We summarize the theory of coronagraphic optics, and identify a dimensionless fine-tuning parameter, F, which we use to describe the Lyot stop size in the natural units of the coronagraphic optical train and the observing wavelength. We then present simulations of coronagraphs matched to adaptive optics (AO) systems on the Calypso 1.2m, Palomar Hale 5m and Gemini 8m telescopes under various atmospheric conditions, and identify useful parameter ranges for AO coronagraphy on these telescopes. Our simulations employ a tapered, high-pass filter in spatial frequency space to mimic the action of adaptive wavefront correction. We test the validity of this representation of AO correction by comparing our simulations with recent K-band data from the 241-channel Palomar Hale AO system and its dedicated PHARO science camera in coronagraphic mode.Comment: To appear in ApJ, May 2001 (28 pages, 10 figs

    SUNRISE/IMaX observations of convectively driven vortex flows in the Sun

    Full text link
    We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams and images obtained with the 1-m balloon-borne Sunrise telescope. By visual inspection of time series, we find some 3.1e-3 vortices/(Mm^2 min), which is a factor of 1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9 min, with a standard deviation of 3.2 min. In addition, we find several events appearing at the same locations along the duration of the time series (31.6 min). Such recurrent vortices show up in the proper motion flow field map averaged over the time series. The typical vertical vorticities are <= 6e-3 1/sec, which corresponds to a period of rotation of some 35 min. The vortices show a preferred counterclockwise sense of rotation, which we conjecture may have to do with the preferred vorticity impinged by the solar differential rotation.Comment: To appear in ApJL. 5 Figs, 4 pages. The two animations associated with the work can be downloaded from http://www.iac.es/proyecto/solarhr/imaxvortex.html References updated in V

    Surface waves in solar granulation observed with {\sc Sunrise}

    Full text link
    Solar oscillations are expected to be excited by turbulent flows in the intergranular lanes near the solar surface. Time series recorded by the IMaX instrument aboard the {\sc Sunrise} observatory reveal solar oscillations at high resolution, which allow studying the properties of oscillations with short wavelengths. We analyze two times series with synchronous recordings of Doppler velocity and continuum intensity images with durations of 32\thinspace min and 23\thinspace min, resp., recorded close to the disk center of the Sun to study the propagation and excitation of solar acoustic oscillations. In the Doppler velocity data, both the standing acoustic waves and the short-lived, high-degree running waves are visible. The standing waves are visible as temporary enhancements of the amplitudes of the large-scale velocity field due to the stochastic superposition of the acoustic waves. We focus on the high-degree small-scale waves by suitable filtering in the Fourier domain. Investigating the propagation and excitation of ff- and p1p_1-modes with wave numbers k>1.4k > 1.4\thinspace 1/Mm we find that also exploding granules contribute to the excitation of solar pp-modes in addition to the contribution of intergranular lanes.Comment: 12 pages, 4 figures, to appear in a special volume on Sunrise in Astrophysical Journal Letter

    Bright points in the quiet Sun as observed in the visible and near-UV by the balloon-borne observatory Sunrise

    Full text link
    Bright points (BPs) are manifestations of small magnetic elements in the solar photosphere. Their brightness contrast not only gives insight into the thermal state of the photosphere (and chromosphere) in magnetic elements, but also plays an important role in modulating the solar total and spectral irradiance. Here we report on simultaneous high-resolution imaging and spectropolarimetric observations of BPs using Sunrise balloon-borne observatory data of the quiet Sun at disk center. BP contrasts have been measured between 214 nm and 525 nm, including the first measurements at wavelengths below 388 nm. The histograms of the BP peak brightness show a clear trend toward broader contrast distributions and higher mean contrasts at shorter wavelengths. At 214 nm we observe a peak brightness of up to five times the mean quiet-Sun value, the highest BP contrast so far observed. All BPs are associated with a magnetic signal, although in a number of cases it is surprisingly weak. Most of the BPs show only weak downflows, the mean value being 240 m/s, but some display strong down- or upflows reaching a few km/s.Comment: Accepted for publication in The Astrophysical Journal Letters on September 08 201

    Fully resolved quiet-Sun magnetic flux tube observed with the Sunrise IMaX instrument

    Full text link
    Until today, the small size of magnetic elements in quiet Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope Sunrise with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid- to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.Comment: Accepted for publication in The Astrophysical Journal Letters on Aug 11 201

    Spatial variations of the Sr i 4607 {\AA} scattering polarization peak

    Full text link
    Context. The scattering polarization signal observed in the photospheric Sr i 4607 {\AA} line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims. We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods. Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results. Spatial variations of the scattering polarization in the Sr i 4607 {\AA} line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.Comment: 5 pages, 4 figure

    Sunrise: instrument, mission, data and first results

    Full text link
    The Sunrise balloon-borne solar observatory consists of a 1m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system and further infrastructure. The first science flight of Sunrise yielded high-quality data that reveal the structure, dynamics and evolution of solar convection, oscillations and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit, and probably beyond.Comment: accepted by ApJ
    • …
    corecore